
“In saying what is obvious, never choose cunning.
Yelling works better.”

Cynthia Ozick
“We Are the Crazy Lady and Other Feisty Feminist Fables”
in The First Ms. Reader

1968 ch08 09.25.02 4:58 PM Page 236

In contrast to the Viewing and Navigation layer, the interactions in the

Editing and Manipulation layer result in persistent changes to the user’s data. Owing to

HTML’s limited interactive vocabulary and the complex nature of these interactions, the

Editing and Manipulation layer contains some of the most challenging and difficult

aspects of the overall design. In addition, the technical limitations of Web applications

are particularly visible in this layer. In many cases, the ideal level of sophistication and

interactivity is too difficult or costly to achieve, resulting in a variety of implementation

tradeoffs and compromises. Therefore, the appropriate and practical design solution

requires a delicate balance between users’ needs and technical feasibility.

This chapter approaches the problem from three different angles: the overall goals and

purpose of forms, the proper use of HTML input controls, and how to combine input

controls to facilitate complex interactions.

EDITING AND
MANIPULATION8

Using HTML Input Controls
to Accurately Capture Users’ Data

1968 ch08 09.25.02 4:58 PM Page 237

DESIGNING FORMS: THINKING IN TERMS OF
THE WHOLE

Remember the chapter about structural models and the discussion about

views and forms? When designing the structural model, the focus is on the

flow of the site as a whole and how various types of pages contribute to that

flow. After determining that a particular workflow requires a form,

however, the challenge of the details still remains.

At the highest level, forms are essentially a mechanism for the applica-

tion to ask the user questions: “When would you like to fly?,”“What is your

address?,” and so forth. By contrast, views are essentially a mechanism for

the user to do the asking: “What is the balance of my account?,” “What do

you have in the housewares department?,” and so on.

As we all know, the rules of polite conversation are slightly different,

depending on who’s doing the talking and who’s doing the listening.

Therefore, the guidelines and conventions for form design are also slightly

different from those for views.

PACE APPROPRIATELY

It’s hard to hold a conversation with someone who talks too fast or asks 16

questions before giving you a chance to answer. The same is true whether

you’re interacting with another person or with a Web application.

Therefore, determining the optimal length and density of information are

two immediate concerns affecting the design of the overall form.

“We need to collect 67 fields of data. Should we create six really short

forms, four medium-length forms, or one honkin’ long form?”

238

MAKING THE WEB WORK

1968 ch08 09.25.02 4:58 PM Page 238

239

CHAPTER 8 EDITING AND MANIPULATION

The answer is, of course, one of balance. If the user needs to see all the

options at the same time, the form will necessarily be long. Similarly, if

choices in one part of the form determine the available choices in another

part, the form will need to be divided into multiple pages. It’s a bit like

feeding babies; you want to be sure each bite is big enough to keep them

interested, and you also want them to know what’s coming for dessert. The

balance, however, is to not stuff so much in their mouths at once that they

spit it back up all over you.

When you’re considering this question, a good place to start is a careful

review of the functional requirements. Do you really need all those fields,

or could some be eliminated? Are any fields optional? Can those fields be

moved to another page or grouped together so as not to distract from

the form’s main elements? At a minimum, are required fields clearly

differentiated from optional fields so that users can quickly identify what

information they do and don’t have to supply?

Complex forms can have so many input elements that the sheer volume

of controls is overwhelming. Although it’s acceptable to make users scroll,

that doesn’t give you a license to create a form of any length. Long forms

are as painful and intimidating as a mortgage application and should

generally be avoided. Imagine how many potential sellers get scared out

of eBay simply because the form for listing auctions is so overwhelming

(see Figure 8.1).

Long forms do, however, have two important advantages: efficiency and

ease of error reporting. They are efficient in that they require only a single

page load and they allow users to view the full set of options without

additional navigation. They also enable errors to be detected, reported, and

corrected in a single page. These advantages, however, bring with them the

high cost of confusion, intimidation, and bewilderment, particularly for

users new to the application.

1968 ch08 09.25.02 4:58 PM Page 239

In most cases, the better solution is to identify logical splits in the infor-

mation so that the form can be presented in multiple pages. What could be

presented as a single, lengthy form often turns out to be more manageable

as a four-page wizard.

LIMIT NAVIGATION

As I mentioned in the context of structural models, Web applications are

built from two fundamental page types: views and forms. Although a major

function of views is navigation, such is not the case for forms. For all the

reasons pointed out in Chapter 5, “The Structural Model: Understanding

the Building Blocks of a Web Interface,” the number of navigation options

on form pages should be severely restricted. This applies to high-level nav-

igation elements, such as tab bars or trees, as well as low-level navigation.

If your form includes a navigational header or other ways to exit the form,

at least some of your users are likely to fill out the form and then click one

of the navigation paths without clicking the Submit button first. When this

happens, it’s impossible to know for sure if they meant to submit their

changes but simply forgot to click the Submit button, or if they really

meant to abandon the transaction. Even if the application is smart enough

to trap every possible click out of the form and perform the submit behind

the user’s back, the basic problem remains: Exiting a form without using a

command button creates ambiguity as to whether changes should be

accepted or abandoned. Of course, you can’t control the user exiting the

form by way of the Back button, a bookmark, or typing in a new URL,

but treating forms as modal dialog boxes with limited navigation and

explicit Cancel and Submit buttons at least helps limit the problem.

240

MAKING THE WEB WORK

8.1

The overwhelming quantity of

options on eBay’s selling form

must intimidate any but the most

determined of potential sellers.

1968 ch08 09.25.02 4:58 PM Page 240

INDICATE STATUS AND PROGRESS

If a form is part of a guide or a wizard, it should include clear indications

of progress. If users are in step one of a seven-step process, it’s only polite

to let them know where they are and how many steps are left. Even when

some steps are optional—choosing gift wrapping, for example—it is still

important to inform users of the number of possible steps. The goal should

always be to set appropriate expectations for users so that they feel some

level of control over what is happening.

Figure 8.2 from the Opodo travel site is a great example of a progress

indicator. Notice how the current step and all the possible steps are

indicated in the progress bar.

241

CHAPTER 8 EDITING AND MANIPULATION

8.2

A clear indication of where

users are in the process sets

appropriate expectations and

keeps them in control of the

experience.SUPPORT INTELLIGENT FLOW AND KEYBOARD NAVIGATION

Well-designed forms also demonstrate balanced flow and intelligent

ordering of elements. The user should be clearly drawn from the top of the

form toward the bottom. Although a layout that draws the user across

the page is possible, the established Web convention clearly favors

vertical layouts.

In addition to enhancing their digestion of the experience, well-

designed flow also enables users to quickly navigate through the form from

their keyboards. This allows more sophisticated users to quickly progress

through the form without having to move their hands back and forth

between the keyboard and the mouse. For applications where users

1968 ch08 09.25.02 4:58 PM Page 241

repeatedly interact with a form, this is particularly important. For example,

the Compose Message page of an email application is a form users will

interact with over and over again. Being able to use keyboard navigation

to move through the form’s input controls enhances the interaction’s

efficiency and speed. To maximize the impact, it is important to

consciously design and specify the tab order rather than rely on the

browser’s default behavior.

PROVIDE MULTIPLE CLUES

Another key to form design is to make the use of input controls as clear as

possible through the use of clues such as labels, examples, and sizing. One

of the easiest things to get right—and wrong—is the label for an input

control. Although the subject of labels is actually a component of Layer 9:

Text, it is still worth noting here that a major factor in creating clear forms

is labeling input fields appropriately.

Providing examples of the expected input when there might be

confusion is important, too. For example, a text field for an email address

should be labeled “Email” and should include a sample of the data, such as

“yourname@address.com.” Examples are especially important in Web

applications because automatically formatting the data for the user is more

difficult than in desktop applications. Without some indication of the

correct format for the input, users can’t be sure of precisely what’s being

requested. This is particularly true of dates, where so many different

standards are in use.

Length is another critical clue you can provide for users. Because text

fields can contain any type of text string or number, they offer few clues

about the expected input and pose the biggest risk of input errors.

242

MAKING THE WEB WORK

1968 ch08 09.25.02 4:58 PM Page 242

However, setting the length of text boxes to a dimension appropriate for the

input is one clue you can easily embed in your design. For example, if you

have a field for a five-digit zip code, don’t use a text box 24 characters wide.

By setting the text box to a size appropriate for the input length plus a

few characters for editing, you give users another valuable clue to what

you’re asking.

Finally, indicating which fields are required and which are optional is

often useful. The current convention on the Web is to add an asterisk to the

field label of required fields. Unfortunately, this convention doesn’t work

very well when most of the fields are required because you end up with

indicators at nearly every field.

Although it’s possible to flip the logic and indicate the optional rather

than the required fields, this runs counter to the established convention and

can create confusion. Therefore, often the best solution is presenting

required and optional fields in different areas of the page. Geography again

proves to be an effective indicator of difference.

MAKE CHOICES VISIBLE

One of the major purposes of forms is to give users a way to view and

indicate choices. To support this basic goal, it is important to make the

choices as visible as possible. Although the demand for screen real estate is

always present, radio buttons, check boxes, and list boxes are the best way

to communicate choices. Menus offer the promise of visual efficiency, but

they do so by hiding choices, increasing the amount of interaction and

exploration required for the task. As a result, they should be used sparingly.

243

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:58 PM Page 243

Figures 8.3 and 8.4 illustrate the tradeoffs in using menus. These figures

compare the system configuration pages from the Dell Computer and

Apple Computer online stores. Although the Apple design benefits from

the increased visual economy of menus, the Dell site more effectively

communicates the available choices, thus reducing the amount of

exploration required of the user.

244

MAKING THE WEB WORK

8.3

Apple Computer’s system

configuration page requires the

user to explore the different

menus to learn about the avail-

able options and prices.

8.4

Dell Computer’s online store uses

radio buttons instead of menus

so that the available configuration

options are instantly visible.

1968 ch08 09.25.02 4:58 PM Page 244

Well-designed forms are a delicate balance of many different factors:

the length of the form, the density of the layout, the clear use of input

controls, and the flow of information.

INPUT CONTROLS: PICKING THE
RIGHT TOOL FOR THE JOB

Like any design medium, mastery of Web design in general and form design

in particular requires a solid understanding of the available materials. In

this case, that means understanding the input controls available in HTML.

Although the vocabulary of radio buttons, check boxes, menus, text boxes,

and list boxes might seem limited and simple, there are many subtle and

not-so-subtle aspects of each control. The following sections explore each

control in detail, including examples of their proper use.

CHECK BOXES

As in the printed forms from which they are derived, check boxes indicate

whether an item is selected. Although they often appear in groups, check

boxes do not necessarily have any relationship to one another. Correctly

used, the options that check boxes present are independent choices that do

not affect any other options on the form. The one exception is when a check

box is nested with other input controls to indicate an explicit master-slave

relationship. This style of nesting is used when an option has associated

“sub-options.” For example, an email application could have an option to

check for spelling errors before sending a message. If the user selected the

spell check option, there could be additional options to indicate which

language to use, whether to ignore Internet addresses, and so forth.

245

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:58 PM Page 245

Remember that check boxes, whether alone or in a group, don’t require

users to select anything at all. Unlike radio buttons or menus, this means

check boxes typically allow for a “null” selection. However, in some situa-

tions, users can select one or more of the available options but are required

to select at least one; in other words, a null selection is not valid. In these

cases, check boxes can take on a hybrid radio button behavior by using

JavaScript to ensure at least one check box is always selected. Figure 8.5

illustrates a common implementation of check boxes.

246

MAKING THE WEB WORK

8.5

The use of radio buttons for the

first two items under Position

Data ensures that the user always

has at least one of these fields

selected, but allows every other

field to be optionally selected.

1968 ch08 09.25.02 4:59 PM Page 246

247

CHAPTER 8 EDITING AND MANIPULATION

RADIO BUTTONS

Radio buttons derived their name and behavior from the channel selectors

on car stereos. In the physical world as well as the virtual one, radio

buttons are used to select one, and only one, choice from an exclusive list

of options.

Like check boxes, radio buttons are a fundamental element of all

graphical user interfaces, including the Web. Although they have the

distinct advantage of showing users all the possible options, they also have

the disadvantage of scale. In other words, they don’t.

Although radio buttons work great with five to seven options, if you go

much past that, the required number of radio buttons simply creates too

much visual clutter to be effective. In addition, if the number of options

varies depending on the user’s information or the application’s state, radio

buttons are a poor design choice because the increase or decrease in the size

of the group introduces too much unpredictability into the layout. Because

of those two limitations, radio buttons are most appropriate when they

represent a fixed set of two to seven options.

Unlike check boxes, there is always an exclusive and dependent

relationship between the radio buttons in a single group. Radio buttons are

not solitary creatures and should never appear by themselves. Regardless of

the size of the radio group, one and only one of the buttons is always

selected. That means one of the radio buttons must always be selected

by default.

1968 ch08 09.25.02 4:59 PM Page 247

Although some of the best designed applications fail to indicate a

default selection within a radio group, doing so places the group in an

unnatural state. For example, RedEnvelope’s product-ordering pages

include a two-button radio group to choose whether or not to wrap the

item in its exclusive gift box (see Figure 8.6). However, the application does

not indicate a default selection, so users are forced to make an explicit

choice between the two radio buttons. This approach succeeds in making

users more aware of the gift box option, but it does so by using radio

buttons incorrectly and undoubtedly causes input errors.

248

MAKING THE WEB WORK

8.6

No default selection is indicated

for the two-item radio group—an

improper use of radio buttons as

input controls.

1968 ch08 09.25.02 4:59 PM Page 248

When there are only two options, using a single check box in place of

two radio buttons is sometimes possible. For example, in a stock portfolio

application that can include or exclude closed accounts, it is more compact

to have a single check box labeled “Include Closed Accounts” rather than

one radio button for include and another for exclude. However, this

solution works only when the two options are obvious opposites of one

another, such as include/exclude, on/off, or hide/show.

LIST BOXES

As you might guess from their name, list boxes are used to display lists

of items in a fixed amount of space. List boxes can operate in a single or

multi-select mode, essentially mimicking a list of radio buttons or check

boxes, respectively.

Because they require less screen real estate than a comparable group of

radio button or check boxes, list boxes are an effective solution when five or

more options are being presented. In addition, because they take up a fixed

amount of space, they are particularly effective when the number of

options is unknown or variable.

The height of a list box is expressed in lines and is one of the few

formatting options available. A reasonable question is “What is the optimal

number of lines to display in a list box?” A slightly vague but accurate

answer is “Tall enough to reveal a useful number of items but short enough

to be visually manageable”—in other words, not too tall and not too short.

249

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 249

More precisely, you should aim for between five and seven lines, preferably

five or seven lines. Lists with an odd number of items are generally easier to

digest visually because one of the list items lies at the exact middle. As a

result, it’s easier to break the list into two smaller units that are quicker

to scan.

The height of the list box not only affects the form’s visual layout, but

also gives the user an important clue about the list box contents. This is

similar to how the length of a text field helps communicate the field’s

intended contents. A list box that displays three lines implies that the total

number of items in the list is relatively short, whereas a list box with a

height of seven items implies that the total list is much longer. In addition,

the height conveys an impression of the list’s importance, with bigger lists

being perceived as more important choices than shorter lists.

In addition to the height of the list box, HTML also gives you control

over the list box’s behavior—specifically, whether the user can select

multiple items or only a single item in the list. Put another way, does the list

behave like a group of radio buttons or a group of check boxes?

The unfortunate answer is that multi-select list boxes cause a number

of usability problems and are an unacceptable option for the majority of

Web users. When the list box is in multi-select mode, users can make a

multiple selection by holding down a modifier key (for example, the Ctrl

key for Windows) while clicking additional items in the list box. However,

not all users understand or are even aware of this behavior.

It is also common for a selection to include items spread out across the

list. As a result, users have to scroll through the list to view the full selection,

often losing track of what is and isn’t selected. Depending on the selection

and the scroll position, the entire selection might be displayed outside the

list’s visible area, giving the erroneous impression that nothing is selected.

250

MAKING THE WEB WORK

1968 ch08 09.25.02 4:59 PM Page 250

Suffice it to say that multi-select list boxes are riddled with opportunity for

error and misunderstanding. If the situation calls for a multiple selection

from a long list, there are better solutions than a multi-select list box.

A final point is that list boxes, like a group of radio buttons, should

always offer a meaningful default. Similarly, if a null selection is allowed,

the list box should contain an option labeled “None” instead of being

displayed without a selection.

MENUS

If you compressed a list box so that it displayed only one item at a time,

you would end up with a menu. Despite the differences in behavior and

appearance, menus provide the same function as list boxes and radio

buttons: making an exclusive choice from a list of multiple options.

The primary advantage of menus is visual efficiency. In addition to

their ability to present a large number of options in a small space, their

“now you see it, now you don’t” behavior makes them particularly

appropriate when the number of options is variable.

Unfortunately, menus have one major weakness: They’re hard to use.

Picking an item from a menu is one of the most complicated mouse

operations there is. Selecting an option from a menu requires two clicks,

a complex click-and-drag movement, or a combination of keys from the

keyboard. To make matters worse, the click target for an item is fairly small,

and the error recovery is zilch. If you pick the wrong item, you’re all the way

back to square one. Finally, the menu behavior hides options from users

and gives them few clues about the menus contents. As a result, menus are

not only an exercise in physical dexterity, but also a challenge to under-

standing and recall.

251

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 251

Despite these caveats, however, menus still occupy an important

position in the interactive landscape. The challenge is knowing when and

where to use them so as to minimize their disadvantages.

In addition to the ever-present concern for how all the form’s elements

work together, there are two other considerations specific to menus: how

many items it contains and the default selection. Because menus can be

difficult to navigate, the number of options should generally be kept short.

Although there’s no hard-and-fast rule, a list of more than 15 items is hard

to look at, and anything north of 21 is difficult to use. These limits can be

expanded, however, if the contents of the menu are sorted and well under-

stood by the target user group. For example, a menu containing the 50 U.S.

states might be a reasonable solution for a site catering to users in the

United States, particularly if the state choice was optional. A list of 50 hotel

locations, on the other hand, would not be appropriate because users

would be unfamiliar with the list’s content and would have to read through

each option one by one.

The second consideration when using a menu is indicating a default

selection. In many cases, an application won’t have the necessary informa-

tion to provide an appropriate default, so the real question becomes “What

is the most effective way to communicate that the user needs to make a

choice?” Two methods are commonly used in such situations: Don’t

indicate a default so the menu is displayed without a selection, or select a

dummy item labeled “Select….”

Because the fundamental behavior of a menu is to indicate a selection,

not having a selection is an invalid state for the control. Therefore, the

optimal solution is to select a dummy item labeled “Select…”. Even

better is to reference the menu’s contents in the selection—for example,

“Select State….”

252

MAKING THE WEB WORK

1968 ch08 09.25.02 4:59 PM Page 252

Menus are perhaps the most overused and inappropriately used control

on the Web. Of course, they’re also one of the most useful. Before you place

them all over your forms, however, be sure you understand and accept the

usability problems they’re likely to introduce.

TEXT BOXES

Text boxes are used to capture strings of text, numbers, or both. They

are the most straightforward input control from a behavior perspective,

but because there is no real control over what users type in them, they are

also a significant source of input errors. To help alleviate this risk, giving

users multiple clues about the correct input is essential. As discussed

earlier, these clues include clear labels, sample text, useful defaults, and

appropriate sizing.

In addition to width, HTML can also specify whether a text box should

display one or more lines of text. Although most text boxes display a single

line of text, in some situations—the body of an email, for example—

a multiline text box is useful. Whatever the case, it still comes down to

setting the text box to a size appropriate for the input.

BUTTONS

The final commonly used input control is the button. From a technical

perspective, buttons come in two basic flavors: Submit and Cancel. Submit

buttons send a form’s contents to the server for processing, and Cancel

buttons throw out a form’s contents and return users to the page from

whence they came. From a user’s perspective, however, a button’s function

is known by its name.

253

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 253

Because there is no control over a button’s appearance, most sites use

images in place of standard HTML buttons. Unfortunately, some sites also

use links in place of standard buttons. The two objects have different uses,

however, and should not be used interchangeably. Although there are rare

exceptions, in general, links should be used solely as navigational devices,

not to submit or save information. Similarly, buttons should be used only

to initiate commands, not as navigation. Figure 8.7 illustrates mixing up the

use of links and buttons.

Although HTML provides only a small set of input controls

(summarized in Table 8.1), don’t let the limited vocabulary dissuade you

from creating sophisticated interactions. It’s true that a more dynamic set

of controls would make some operations easier to design and use, but the

set that is available can generally get the job done.

254

MAKING THE WEB WORK

8.7

In this example from Yahoo!, the

designers have inappropriately

used links in place of buttons.

1968 ch08 09.25.02 4:59 PM Page 254

Table 8.1 Standard HTML Interface Controls

Name Purpose

Check box Select none, one, or many from a fixed list of

options, preferably seven or fewer.

Radio button Select one and only one from a fixed list of

options, preferably 7 or fewer.

List box Select one and only one from a list of any size.

(single select) Also used for lists containing an unknown

number of options.

Menu Select one and only one from a list, preferably

fewer than 25 items. Also used for lists containing

an unknown number of options.

Text box Input a string of any length.

Button Perform an action or a command.

File Upload a file.

COMMON INTERACTION PROBLEMS
AND SOLUTIONS

Lest you conclude there’s nothing more to forms than a series of

independent, isolated input controls, this section focuses on common

interaction problems requiring multiple input controls working together.

These problems include the following interactions:

� Selecting a single item from a small, medium, or large number

of options

� Selecting multiple items from a large set of options

� Selecting a date

255

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 255

Although it would be impossible to anticipate or explore every

interaction problem, the analysis of these problems should give you an

understanding of how to approach and solve complex interaction problems

in general.

PICKING A SINGLE ITEM FROM A LIST

One of the most common input operations in a Web application requires

the user to select a single option from a list. Depending on the situation, the

user might need to select an item from a list of 2, 20, 200, or even 2,000

possible options. Regardless, the interaction requirement remains the same:

an exclusive choice from an exhaustive list.

There are three basic solutions in these situations, depending on the

number of options and whether the list of options is fixed or variable.

The simplest solution relies on a group of radio buttons and is appropriate

for a small, static number of options. The second solution, appropriate for

a large set of options, uses a list box. The last solution uses a menu and is

appropriate for situations somewhere in between.

Small Set of Choices

The least complex incarnation of the single-selection problem requires the

user to select an item from a fixed small set of options, generally between

two and seven. There are two reasonable solutions in this situation: a group

of radio buttons or a menu.

Although many designers faced with this problem use menus in place

of radio buttons, the advantage of visual efficiency that menus offer comes

at the price of hidden options and usability concerns. Although this may be

an acceptable tradeoff for seldom used features or very lengthy forms, as a

general rule, options should not be hidden from users. Menus hide options;

radio buttons don’t. Call it a guideline, call it a rule, call it a suggestion:

Whenever possible, use radio buttons instead of menus.

256

MAKING THE WEB WORK

1968 ch08 09.25.02 4:59 PM Page 256

When the number of choices depends on the user’s data or the

application’s state, however, this choice isn’t possible. For example, a stock

portfolio application typically allows users to create custom views of their

portfolios, displaying the list of views as a menu in the main portfolio

page. The menu is an appropriate solution in this case because it enables

the page layout to remain consistent regardless of the number of views the

user creates.

Online clothing stores are an instructive example of a design that uses

menus when a group of radio buttons would be more appropriate. For

most clothing articles, users have to indicate both a size and a color. This

is typically handled as two independent selections and presented as two

different menus. However, size and color are not independent selections.

Rather, they are two distinct characteristics that combine to describe a

single item. In addition, the number of options in either control is typically

fewer than seven.

Figure 8.8 shows a typical solution that uses menus for selecting

clothing size and color. Figure 8.9 shows an alternative design, with text

links in place of the menus. Compared to the standard menu solution, the

text link solution has these key advantages:

� Visibility of choices. The full set of choices is instantly visible

without the user having to explore the contents of one or

more menus.

� Reduced click count. The click count has been reduced by

substituting a single link for the two menu choices and the Add

to Cart button. An action that took three clicks—select size,

select color, and add to cart—has been reduced to one.

257

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 257

� Simple mechanism for communicating unavailable size/

color combinations. This solution easily handles unavailable

size/color combinations. By contrast, the menu required the user

to first select the size/color combination before the interface

reported whether it was available.

� Ease of use. As an interface control, text links are physically

easier to operate than menus, so this solution is easier to use

than a solution relying on menus.

As is typically the case, however, this solution also comes with some

clear disadvantages. Determining whether the following disadvantages are

a reasonable tradeoff compared to the advantages is no simple question:

� Limited scalability. Although this solution works well in the

illustrated situation, if the number of sizes or colors grew past

seven, the size of the matrix would be so large that it would

overwhelm the page.

� No clear Add to Cart action. The most suspicious part of this

design is removing the Add to Cart button. Although the text link

is a reasonable way to add an item, the interaction goes against

convention and could easily confuse users.

� Difficult error recovery. By equating a link with the Add to Cart

action, the solution does not have a simple method for users to

review their selection before adding it to their Shopping Carts.

This problem is compounded by the solution’s inability to give

users a way to recover from an incorrect selection, other than

deleting the incorrect item from their Shopping Carts.

258

MAKING THE WEB WORK

1968 ch08 09.25.02 4:59 PM Page 258

One way around these disadvantages would be to replace the text links

with radio pictures, which would enable the Add to Cart button to be

added, thus eliminating the two major problems. However, the visual

weight of a radio picture would likely make the design even less scalable.

259

CHAPTER 8 EDITING AND MANIPULATION

8.8

To purchase an item, the user

has to navigate both the size and

color menus, optionally indicate a

quantity and ship-to address, and

click the Add to Cart button.

8.9

In this alternative design, size

and color menus have been

replaced with a two-dimensional

matrix of links.

1968 ch08 09.25.02 4:59 PM Page 259

In addition to their standard representation as circles, radio buttons

can be represented as more meaningful icons. An iconic presenta-

tion of radio buttons is known as radio pictures. Although the two

presentations are functionally identical (an exclusive choice from

an exhaustive list of options), radio pictures are more visually

efficient. A common example of a solution using radio pictures is

the left, right, center, and justified text alignment icons in many

desktop applications.

260

MAKING THE WEB WORK

Other changes to the original design include eliminating the Quantity

text box and placing the Ship To menu at the top of the shopping area.

Because users rarely order multiple quantities of the exact same article of

clothing—socks, T-shirts, and underwear being exceptions—the quantity

option has been moved from the main product page to the Shopping Cart.

In addition, because the Ship to option is less frequently used, it has been

placed in a less visually prominent position.

Whether this solution represents a definitive, meaningful improvement

over the original is a question best left to a usability study. Clearly the

design represents a departure from convention—a move that should always

be viewed with skepticism. In the perpetual search for improvement,

however, examining the conventional solution in light of alternatives is

always useful and often educational.

Medium or Unknown Number of Choices

With more choices—7 to 21, give or take—a different approach is required.

The use of radio buttons is ruled out, thanks to the sheer number of

options. The remaining options are a menu or a scrolling list box, although

the former is suspect owing to its ever-present usability problems.

1968 ch08 09.25.02 4:59 PM Page 260

261

CHAPTER 8 EDITING AND MANIPULATION

Still, menus do have their place, and Figure 8.10 is one of them. This

page from The Motley Fool’s portfolio tracker allows users to create a

customized view of their portfolio. Instead of starting each new view

from scratch, users can base a view on an existing one by selecting it from

a menu.

8.10

The “Start From a View” option

is an appropriate use of a menu

because the control is not

required and because the number

of choices is variable but unlikely

to be more than 20.

Three main factors justify the use of a menu in this situation:

� Unknown number of items. Depending on how many views the

user has set up, the list could have 3 to 33+ different options.

Because of this variability, radio buttons are inappropriate.

� Small to medium range of options. The number of options in

the list, although variable, is unlikely to be more than 20. After all,

how many different portfolio views is one user likely to create?

With a range of 2 to 20, the number of options is reasonably

manageable with a menu.

1968 ch08 09.25.02 4:59 PM Page 261

262

MAKING THE WEB WORK

� The control is optional. Users don’t have to select an existing

view as a starting point. Therefore, the control doesn’t warrant

the visual weight and prominence of a scrolling list box.

In situations calling for the user to select a single item from a medium

or an unknown number of choices, the challenge is ultimately one of

balance. Although a menu or scrolling list box can be used, the optimal

solution is the one that best allocates screen real estate given the situation.

Large Number of Choices

A third type of design challenge involves selecting a single item from a large

list. What constitutes “large” is open to interpretation, but generally

speaking, it’s a number north of 21. In these cases, radio buttons and menus

are ruled out by the volume of options. This leaves scrolling list boxes as the

only viable alternative.

An educational point is found on almost every address entry form on

the Web. The conventional design for address forms incorrectly uses

a menu as the input control for U.S. states and Canadian provinces. The

solution requires the user to navigate a menu of 50+ items, even though

the same input could be captured with a scrolling list box (see Figure 8.11).

Granted, the list box requires more screen real estate, but that cost is

outweighed by the usability benefits of revealing all the options and

providing an easier-to-use control.

1968 ch08 09.25.02 4:59 PM Page 262

263

CHAPTER 8 EDITING AND MANIPULATION

8.11

This figure illustrates the use

of a scrolling list box as the

input control for U.S. states

and Canadian provinces.

The use of a scrolling list box has been extended in Figure 8.12 to

demonstrate how the contents of an especially long set of choices can be

filtered by using an additional control. In this example, the standard list of

U.S. states and Canadian provinces has been divided into two smaller

groups. This style of interaction works well when the list can be filtered in

two to four different ways. With a larger set of filter choices, a menu can be

substituted for the radio buttons.

8.12

This example shows how

radio buttons can be used as

a filtering mechanism for a long

list of choices.

1968 ch08 09.25.02 4:59 PM Page 263

When users are required to select a single item from an exhaustive list

of options, there are two key considerations: the number of options and

whether the number of options varies. Although radio buttons, menus,

and scrolling list boxes are all acceptable solutions, the ultimate challenge is

to find a balance between the need to make all the options visible, the ease

of use of the input controls, and the visual weight of the different

interface elements.

Picking Multiple Items from a List

A second common interaction problem is the ever-present “picking

multiple items from an exhaustive list.” Although multiple selection and

single selection pose similar design challenges, the two are far from

identical. In both cases, the elements supporting the interaction have to

indicate the list of options as well as the current selection. For single–select

controls, such as menus and list boxes, one interface element serves

to simultaneously indicate the selection and the available options. With

multiple selections, however, the interface has to communicate a selection

involving any combination of options and, as a result, a different set of

interaction mechanisms is required.

In situations calling for a relatively small number of choices, the issues

parallel single-selection problems. Check boxes are substituted for radio

buttons, and everybody moves on. As you might expect, however, that

simplicity evaporates if the number of choices is variable or expands much

beyond seven choices.

264

MAKING THE WEB WORK

1968 ch08 09.25.02 4:59 PM Page 264

One potential solution for multiple selections is a scrolling list box in

multiple-select mode. In this mode, users select multiple items by holding

down a modifier key while simultaneously clicking items in the list.

Unfortunately, multi-select list boxes have a host of usability and feedback

problems, not the least of which is that many users don’t even realize

they exist.

An alternative solution uses two single-select list boxes working in

concert with two or more command buttons. In this solution, one control

contains the possible options, and the other contains the currently selected

items. In addition, a group of command buttons is used to move items back

and forth between the lists. Figure 8.13 from Evite shows a good example

of this solution.

265

CHAPTER 8 EDITING AND MANIPULATION

8.13

Evite’s address book supports

selecting multiple items through

the use of a list box containing

possible options and another

containing the selected items.

Items are moved between the

lists by clicking a command

button.

1968 ch08 09.25.02 4:59 PM Page 265

Harkening back to the days of Macintosh O/S 1.0, this motif is some-

times called “font/DA mover” or, in the more modern vernacular,

“source/target list.” Although this solution requires JavaScript, it is almost

always the preferred alternative, certainly warranting the extra code

and effort.

A redesign of the Edit View form from Yahoo!’s portfolio tracker

illustrates how source/target lists can clean up a complicated multiple-

selection problem. Figure 8.14 from Yahoo! is used to customize users’

views of their stock portfolio. In this implementation, the user can

customize up to 16 columns, each containing one of 76 different options.

266

MAKING THE WEB WORK

8.14

Yahoo! portfolio tracker allows

users to customize the view of

their portfolio. The design relies

on 16 menus, each containing

76 elements.

1968 ch08 09.25.02 4:59 PM Page 266

The most conspicuous problem with this design is the use of a menu

containing 76 items—a poor showing in the usability race when there’s

only one such menu, much less 16 of them.

Aside from their function as selection mechanisms, the menus are also

used to control the order of the columns. Unfortunately, although the

menus are stacked vertically, the top-to-bottom ordering is translated to a

left-to-right ordering when the view is being used. In addition to the oddity

of this vertical to horizontal mapping, the use of menus as an ordering

mechanism has another problem. Because the design doesn’t provide a way

to insert a column, users are required to change multiple menus if they

want to place a data element between two existing elements. For example,

if a user wanted to insert a new data element in column 2 but wanted to

retain the order of the next 12 columns, he or she would have to reselect

the elements for columns 2 through 13—a tedious task, even without

76 elements in each menu.

Finally, because there is no interactivity between the menus, this design

does nothing to prevent users from displaying the same data element in

more than one column.

On the positive side, the page includes a categorized list of all 76

possible data elements. By including this reference, the design mitigates

some of the problems created by hiding the options.

Working backward from the implemented design, you can infer the

following requirements:

� Limit the number of columns to 16.

� Do not use JavaScript or DHTML.

� Any element can appear in any column.

� Data elements can be custom sorted.

267

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 267

With these requirements in hand, there are a few alternatives worth

exploring.

Option 1: Check Boxes

As shown in Figure 8.15, one alternative is to replace the menus with check

boxes. Although this approach doesn’t satisfy all the requirements, it does

have some important advantages—as well as disadvantages—to consider:

Advantages

� Obvious presentation of available choices

� Simple selection interaction

� Prevents users from adding the same data element twice

Disadvantages

� No ready mechanism for limiting the selection to 16 data

elements, thus requiring an error notification if more than

16 elements are selected

� No support for column ordering

Although the first disadvantage could be handled through an

error alert, addressing the second would necessitate a reconsideration of

the requirements.

Because the data elements can be grouped together in a meaningful

way, the lack of support for column ordering might not be an issue. The

nature of the data elements is such that determining a prescribed order that

addresses most user’s needs is possible. Ultimately, the questions rests on

whether column ordering is essential to the primary persona and, if so, at

what cost?

268

MAKING THE WEB WORK

1968 ch08 09.25.02 4:59 PM Page 268

Option 2: Source/Target List

A second alternative, relying on a source/target list, is shown in Figure 8.16.

This option includes a source list containing the full complement of data

elements and a target list containing the elements currently selected. This

design also includes buttons for moving items in and out of the selection

and for reordering the selected items. The combination of two list boxes

and four buttons provides all the functionality of the original design but

without the complexity of 16 menus.

269

CHAPTER 8 EDITING AND MANIPULATION

8.15

This redesign of Yahoo!’s Edit View

page does not support customizing

the order of the columns, but it

simplifies the interaction in the

original design.

1968 ch08 09.25.02 4:59 PM Page 269

Compared to the other alternatives, this solution has the following

advantages and disadvantages:

Advantages

� Clear communication of the current selection

� Easy reordering of selected items

� Simplified interaction using fewer input controls

� Visually compact and approachable

� Depending on the preferred use, elements can or cannot be added

more than once

Disadvantages

� No obvious way to limit the selection to 16 items

� The scrolling list cannot display all options in a single glance

� Requires JavaScript

270

MAKING THE WEB WORK

8.16

This design simplifies the

interaction by reducing the

number of input controls needed.

It also enables users to reorder

data elements easily.

1968 ch08 09.25.02 4:59 PM Page 270

A variation of this design could integrate a menu as a filtering

mechanism for the source list box. This would limit the number of items

displayed in the list at any given time and help users locate specific

items quickly.

Like the check box alternative, because this design requires JavaScript,

it does not fully satisfy all the requirements. However, the improvement in

the user experience is again enough to question the requirement.

As these examples show, designing an interface that allows users to

select multiple items is no trivial matter. The unique environment of Web

applications requires creative use of multiple input controls and a thorough

understanding of the product’s requirements and target users.

SELECTING DATES

The selection of dates, a problem found in many Web applications, is

another complex interaction problem worth exploring. Because HTML

doesn’t provide any input controls specifically designed to select dates,

Web applications are left to use the standard set of input controls to

accomplish this rather complex task. Unfortunately, the Web’s lack of

interface standards is nowhere more apparent than in this particular

problem. The following sections analyze the most common solutions to

this problem with attention to the unique pros and cons of each.

Interface Requirements for Date Input

Not surprisingly, the purpose of a date input control is to enable users to

specify a date—that is, the combination of a month, a day, and a year. In a

desktop application, this is typically accomplished with a simple text box or

271

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 271

some sort of custom UI widget. In both cases, the application has special

logic allowing it to instantly recognize and report invalid dates.

With those controls as a baseline, it is reasonable to assume the

following requirements for a proper date input control:

� Provide context. Where appropriate, the input control should

place a date in context. A travel itinerary or future appointment

should be displayed in the context of a calendar, for example, but

a user’s birth date or credit card expiration should not.

� Prevent errors. The input control should prevent users from

selecting an invalid, a nonexistent, or an incorrect date.

� Be efficient. The input control should be quick, efficient, and

simple to operate.

Although Web applications are a different medium from desktop

applications, these basic requirements remain the same.

Text Boxes

As shown in Figures 8.17 and 8.18, the option at the low end of the

sophistication scale relies on a single text box or a group of text boxes for

date input.

272

MAKING THE WEB WORK

8.17

Although a single text box is a

simple approach, it fails to offer

any context or do anything to

reduce errors.

1968 ch08 09.25.02 4:59 PM Page 272

Regardless of whether the design uses one text box or three, this

approach fails to meet any of the requirements. Although the single text

box solution offers an example of the correct date format, nothing in the

interface forces the user to follow it. By contrast, the solution with multiple

text boxes more clearly communicates and enforces the required format.

From a technical perspective, a solution using only text boxes represents the

least amount of effort, but the obvious usability shortcomings generally

make it a poor choice.

Group of Menus

The most common interface for selecting dates relies on a series of menus,

one each for the month, the day, and the year (see Figure 8.19). Despite

the popularity of this design, however, it is not without substantial

usability issues.

273

CHAPTER 8 EDITING AND MANIPULATION

8.18

Although a group of text boxes

does not address all the short-

comings of the single text box,

at least it removes the question

of the correct order for the three

pieces of data.

8.19

Despite its widespread use, this

solution fails to provide context

or prevent input errors.
As an improvement on the text box approach, menus help reduce some

input errors by ensuring the following:

� Values are entered in a controlled manner.

� The application clearly knows which input value represents the

month, day, and year.

� The month, day, and year values are limited to an

appropriate range.

1968 ch08 09.25.02 4:59 PM Page 273

Although the design could support logic dependencies between the day

and month menus—for example, limiting the options for day based on the

selected month to prevent the user from selecting February 30—these

dependencies have their own host of usability concerns and engineering

complexities. As a result, most applications that use this motif rely

on server-side validation to confirm whether the indicated date is

valid. Although this approach helps limit input errors, it does not

completely eliminate them.

Another concern is the failure of this solution to provide context for the

date. By simply reflecting a disembodied date with no reference to a

monthly or weekly calendar, the solution doesn’t communicate the date’s

relationship to past or future time. In some cases, this relationship is not

important—credit card expiration dates, for example—but in others, such

as travel itineraries, it’s critical for the user to quickly understand that the

15th is next Tuesday.

Two factors account for this solution’s popularity: conservation of

screen space and technical expediency. In some situations, these advantages

clearly outweigh any of the disadvantages; in others, however, a more

sophisticated solution is necessary.

Calendars

Another solution for handling date input relies on a calendar as the

primary interface element. Although it’s no great intellectual leap to

conclude that calendars offer an easy-to-use input control, many

applications don’t use them because of the additional technical overhead.

Of the solutions described so far, however, the calendar is the only one to

satisfy the two fundamental requirements: context and error prevention.

274

MAKING THE WEB WORK

1968 ch08 09.25.02 4:59 PM Page 274

Unfortunately, providing calendar-style input is no simple engineering

task in an HTML environment. Although it is possible to create a calendar

with nothing but standard HTML, changing the calendar’s displayed time

frame typically requires a trip to the server and page regeneration. For

multiple date entries—travel reservations, for example—this behavior

renders calendars disruptive and unwieldy. For a single date input, however,

a fully HTML-based calendar, such as the one Evite uses (see Figure 8.20),

can be a useful approach.

275

CHAPTER 8 EDITING AND MANIPULATION

8.20

This page from Evite uses a

calendar built with HTML. Clicking

a date creates a new invitation

for the indicated date.

1968 ch08 09.25.02 4:59 PM Page 275

Instead of placing the calendar directly in the layout, another common

solution is displaying the calendar in a secondary browser window.

Figure 8.21 from JetBlue exemplifies this approach. From the flight search

page, the user can click the calendar icon, opening the calendar in a new

window. When the user clicks a date, the calendar window closes and main

page is updated to reflect the selected date.

276

MAKING THE WEB WORK

8.21

The flight search page includes

typical menus as well as a

calendar option.

Of the options discussed so far, this is the only one that satisfies the

requirements for providing context and preventing errors. Unfortunately,

it also compromises this functionality by introducing a secondary window

and thereby violating the basic page model of the Web.

Another solution worth consideration also relies on a calendar motif,

but instead of opening the calendar in a secondary window, it is integrated

directly into the form. As shown in Figure 8.22, the Broadmoor Hotel’s

1968 ch08 09.25.02 4:59 PM Page 276

reservation page includes two one-month calendars as well as links for

changing the month being displayed. When the user selects a date, its color

changes to white. In addition, after two dates have been indicated, the dates

falling between the two are also highlighted, giving the user a clear, obvious

way of viewing the date range of his or her stay.

277

CHAPTER 8 EDITING AND MANIPULATION

8.22

The Broadmoor’s reservation

form uses two monthly calendars

appropriately integrated into the

reservation form.

Although this implementation requires additional engineering effort

and image production, it is clearly a superior design from a user’s perspec-

tive. It not only satisfies the requirements for providing context and

preventing errors, but it does so without introducing usability problems.

Owing to the transaction orientation of many Web applications,

selecting and entering dates are common interactions. Unfortunately,

the requirements for an ideal date interface dictate significant design and

engineering efforts. The results of this effort, however, are more control for

the user and fewer errors—two benefits worthy of substantial effort.

1968 ch08 09.25.02 4:59 PM Page 277

In most applications, the number of form pages is dwarfed by the volume

of view pages. A lower number, however, should not be assumed to mean

less complexity or importance. Creating forms with integrity and elegance

is one of the most difficult and important challenges of the interface design

process. Well-designed forms are a critical component of an intelligent,

enjoyable, and satisfying user experience. By contrast, poorly designed

forms inevitably lead to user frustration, confusion, and disappointment.

If resources are limited and time is in short supply, forms are perhaps

the single most important area in which to focus your efforts. Here are a

few of the key design principles to keep in mind:

� Pick an appropriate pace. Do not overwhelm users with long

forms that intimidate. Likewise, do not insult them with needlessly

simple forms that fail to contain a task of satisfying dimension.

� Limit navigation. In general, the navigational paths out of

a form should be limited to explicit Submit and Cancel actions.

Eliminating navigational elements from a form focuses users

on the task at hand and prevents them from exiting the form

without definitively saving their changes.

� Provide multiple clues. A well-designed form takes advantage

of as many different communication channels as possible. Clear

labeling of fields, appropriate sizing of text boxes, examples

of correct input, and obvious indications of required versus

optional fields are all important clues to a form’s use.

278

MAKING THE WEB WORK

SUMMARY

1968 ch08 09.25.02 4:59 PM Page 278

� Make choices visible. Forms should not be an advanced version

of hide and seek. Relevant choices should be clearly visible at all

times. Users should not be required to explore an interface to

accomplish basic tasks.

A theme running throughout this chapter has been the importance of

error prevention. Although a perfect world would be free of all such user or

application errors, the world of Web applications is far from that ideal. In

the next chapter, you’ll turn from the subject of form design to the subject

of help, status, and alerts.

279

CHAPTER 8 EDITING AND MANIPULATION

1968 ch08 09.25.02 4:59 PM Page 279

